Experiments with Safe muARTMAP : Effect of the network parameters on the network performance
نویسندگان
چکیده
Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural network architectures in solving classification problems. One of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the category proliferation problem. That is, Fuzzy ARTMAP has the tendency of increasing its network size, as it is confronted with more and more data, especially if the data are of the noisy and/or overlapping nature. To remedy this problem a number of researchers have designed modifications to the training phase of Fuzzy ARTMAP that had the beneficial effect of reducing this category proliferation. One of these modified Fuzzy ARTMAP architectures was the one proposed by Gomez-Sanchez, and his colleagues, referred to as Safe muARTMAP. In this paper we present reasonable analytical arguments that demonstrate of how we should choose the range of some of the Safe muARTMAP network parameters. Through a combination of these analytical arguments and experimentation we were able to identify good default parameter values for some of the Safe muARTMAP network parameters. This feat would allow one to save computations when a good performing Safe muARTMAP network is needed to be identified for a new classification problem. Furthermore, we performed an exhaustive experimentation to find the best Safe muARTMAP network for a variety of problems (simulated and real problems), and we compared it with other best performing ART networks, including other ART networks that claim to resolve the category proliferation problem in Fuzzy ARTMAP. These experimental results allow one to make appropriate statements regarding the pair-wise comparison of a number of ART networks (including Safe muARTMAP).
منابع مشابه
The Effect of Education Based on Social Networks on Knowledge and Performance of Nursing Students in Regard with Safe Injections
Background and Aim: Unsafe injection is like a plague for the health system, which is a constant threat to patient safety. Therefore, the present study was conducted to determine the effect of educational program using the WhatsApp social network on knowledge and performance of nursing students in regard with safe injection in Shushtar University of Medical Sciences in 2020. Methods: In this qu...
متن کاملModeling of weld penetration in SAW process in the presence of boehmite nano-particles surface adsorbed by boric acid using MLP-ANN
This paper investigates the effect of boehmite nano-particles surface adsorbed byboric acid (BNBA) along with other input welding parameters such as welding current, arc voltage, welding speed, nozzle-to-plate distance on weld penetration. Weld penetration modeling was carried out using multi-layer perceptron artificial neural network (MPANN) technique. For the sake of training the network, 70%...
متن کاملModeling of weld penetration in SAW process in the presence of boehmite nano-particles surface adsorbed by boric acid using MLP-ANN
This paper investigates the effect of boehmite nano-particles surface adsorbed byboric acid (BNBA) along with other input welding parameters such as welding current, arc voltage, welding speed, nozzle-to-plate distance on weld penetration. Weld penetration modeling was carried out using multi-layer perceptron artificial neural network (MPANN) technique. For the sake of training the network, 70%...
متن کاملApplication of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کاملInvestigation of Asphaltene Precipitation Using Response Surface Methodology Combined with Artificial Neural Network
The precipitation of asphaltene, one of the components of oil, in reservoirs, transfer lines, and equipment causes many problems. Accordingly, researchers are prompted to determine the factors affecting asphaltene precipitation and methods of avoiding its formation. Predicting precipitation and examining the simultaneous effect of operational variables on asphaltene precipitation are difficult ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2007